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The stressed state near cluster point z = 0 for microflaws (MiFs) in the form of cracks or thin linear sharply-angled inclusions
in an elastic plane located along a line on one side or other of the cluster point and satisfy certain conditions is investigated.
This is preceded by the analytic solution of the first and second fundamental problems of the theory of elasticity for a plane with
an infinite set of collinear linear singularities clustering at a finite point. Cases are considered in which the flaws are such that
their images under the mapping { = 1/z are situated periodically along an entire line or only along a ray. Stability to fracture,
both in the neighbourhood of an MiF cluster point and globally for an MiF system, are investigated using force and energy fracture
criteria. Examples describing the fracture mechanism are given. An analytic solution of the problem of the interaction of a
macroflaw (MaF) with an infinite series of MiFs collinear with it and clustering at the vertex of the MaF is obtained. The
investigation is based on a conformal mapping and the results of {1-4], in which solutions are obtained in closed form of the
first and second fundamental problems of the theory of elasticity for a plane with a denumerable set of cuts with a cluster point
at infinity.

There have been previous investigations [5, 6] of the stressed state near a cluster point of microcracks
arranged on a logarithmic scale along a ray, and asymptotic representations have been obtained for
the stresses and stress intensity factors near the microcrack cluster point. The case considered in [5, 6]
differs from the case considered here both in the method of investigation and in the way mechanical
fracture is viewed. The problem of the interaction of a macrocrack with an infinite set of microcracks
arranged according to a certain law and clustering at infinity has been studied by various methods in
[4, 7-9] and elsewhere.

1. PROBLEMS OF THE THEORY OF ELASTICITY FOR A PLANE WITH
A DENUMERABLE SET OF LINEAR SINGULARITIES CLUSTERING
AT A FINITE POINT

Suppose that a homogeneous isotropic elastic plane with complex variable b = x + iy is weakened
by a denumerable set of microflaws (MiFs) in the form of cracks or thin rigid linear sharply-angled
inclusions located along sections L, = [a,, b,], a, # 0, b, # 0, n € I of the real axis, clustering at the
point z = 0 and satisfying the conditions

Ly —bn 12 d>0, a; — b, <1 (1.1)

when 7 is large.

If the intervals cluster at the point z = 0 from both sides, then the set of indices I = {0; £1; £2;... },
where all the intervals with non-negative indices are situated to the right of the cluster point, and all
the intervals with negative indices are situated to the left of this point (Fig. 1a). If, however, the intervals
cluster only one side (say, the right), then I = {0; 1; . . .}, it being possible for a finite set of intervals
to be situated to the left of the cluster point (Fig. 1b).

Conditions (1.1) are satisfied if, for example, all but a finite number of the intervals L, are such that
their images under the mapping { = 1/z form a periodic set along the entire real axis or semi-axis. We
note that if the MiFs are located log-periodically, as in [6], then the second inequality in (1.1) is not
satisfied.

Suppose that on the sides L3 of the MiFs we have specified either the normal stress 6,(f) and the

shear stress T5,(f) (the first problem) or the partial derivatives (&, v')*(¢) with respect to x of the
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displacement components (the second problem), which are Holder continuous in each interval and can
grow no faster than M | ¢ ™, 0 <X <1ast— 0, and that the stresses o5, oy, Ty and rotation
@™ are specified at infinity. Furthermore, in the second problem we shall take as given the principal
vectors P, = X,, + iY, of the external loads acting on the micro-inclusions L,, diminishing as n — e
no slower than M | a,, IH‘O.

Problem. 1t is required to find the plain stress—strain state outside the flaws L,, n € I characterized
by finite elastic potential energy both in the neighbourhoods of the vertices of each flaw and in a
neighbourhood of the cluster point z = 0 from which sufficiently small neighbourhoods of each interval
L, have been removed. .

We define neighbourhoods of the intervals L, as follows. Let L% be the image of the interval L, under
the mapping § = 1/z, and let U%(L%) be its small e-neighbourhood, i.e. the set of points in the plane
whose distance from L* does not exceed €. The pre-image of the neighbourhood U%(L?%) under the
inverse transformation z = 1/{ is denoted by Ug(L,) and will be called the e-neighbourhood of the interval
L,,; we will call the set of all these neighbourhoods U(L) and will take it to be the e-neighbourhood of
the “line” L which consists of all the intervals L,,, n € 1.

In this case the stress—strain state of the plane with MiFs L,, n € I possessing the properties described
above is determined by the well-known Kolosov—Muskhelishvili formulae [10] in terms of complex
potentials ®(z), Q(z) which at the ends of the intervals L, can become infinite with order less than one,
while for small z, situated outside any fixed small neighbourhood U(L) of the line L understood as
above, these potentials do not exceed M | z [ in modulus for some A < 1. On the line L they satisfy
the boundary conditions

pDH(1) + Q(1) = (1), pd(1) + Q) =F(0), te L (1.2)
where in the case of the first problem p = 1, f*(f) = (0, — it,,)™ and in the case of the second problem

p = —x;f5(t) = —2u(W’ + iv")™ x and p are the elasticity constants of the material. In a neighbourhood
of infinity these functions have the form

P 1 -2 xP 1
O(z)=T—-———+0 , Q=T+ ——mM— -2 )
(2) T 2 (") Q) Tt D) _+0E™) 1.3)
l oo o° N 2“’ oo ’ oo . oo
r=2(0x+0"‘)+lmw , r=0'.‘4_,té:‘__]" (1.4)

where P is the principal vector of the external loads acting on all the flaws. .
Adding and subtracting conditions (1.2) from one another, we obtain the boundary conditions

O (N + @ (1) =2p(1), D3()-D;()=24(t), telL
2p() =T+ f7(), 2q)=fT@)-f (@) (1.5)

for finding the functions @, »(z) = p®(z) * Q(z), and the denumerable set of conditions

(@)= pande="L=O p ey (1.6)

L, 2+ "
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where P, is the principal vector of external loads acting on the flaw L,,. In the case of the first problem
conditions (1.6) express the single-valuedness of the displacements after making a circuit around an
MiFE These functions have all the properties of the function ®(z) at the ends of the intervals L, and in
a neighbourhood of the cluster point z = 0, while in a neighbourhood of infinity they have the form

®,(2)=B, +Cz' +0(z7%), k=1,2

B =(p-DI+oy ~ity, B,=(p+1I'-07 +it}, 1.7
~&=pP o (APIP
'"ar(k+1)" 2T 2m(x+1)

In terms of the functions ®,, 5(z) the Kolosov—Muskhelishvili formulae can be written in the form

p(0, +0,)=2Re(P;(2)+P,(2)), 4upw=(x+HIm(P (z)+P,(2))

2p(0, —i1,,) = D, (2) + D, (2) + pD, (D) - pd, () + (2 - D) (2) + D3 () (1.8)

J ; ;
4u95;(z¢ +i0) = KP (2) + XP;, (2) - pP(2) + pP,(2) — (2 = THP(2) + P, (2))

where in the case of the first problem p = 1 and for the second p = —x.

2. SOLUTION OF THE PROBLEM

We apply the conformal mapping { = 1/z to the elastic domain. The line L then becomes the line
L* consisting of intervals L}, = {a,, B,}, o, = 1/b,,, B, = 1/a,,, n € I which cluster at infinity and according
to (1.1) satisfy the conditions o, — @, = d, B, —a,, <, for large n. Then the functions

W20 =070, ,(1/0) = 2°D, 5 (2) (21)
satisfy all the conditions of -[1] together with the additional condition

YO =BL2+ L + O, k=1,2 g
which should be satisfied in a neighbourhood of the point { = 0. Writing out the functions ¥; »(§) and
changing back from { to z, we find that

D, (2) = X(2)(R(2) + Q(2) + aB)), o = lim X(g)= 11 —‘a"b" (2.2)

b L) nel c,

V aﬂbll Z—-C, ‘ — 2anbn (2 3)

X(z)=”l;ll ¢ @z-a,)z-b,)’ C"_a,,+b"
- 1 t—c, p(tdt Y
k@ ,Emi(z—c"),{,x*(t) t-z (24)
OB WICEES 25)
®,(2)= Bz'*';;f qt(t)jt, L=UL, (2.6)
L ne

The infinite product (2.3) and series (2.4) converge absolutely and uniformly in any closed bounded
domain which does not contain points of the line L. Each square root in the product (2.3) denotes that
branch of the multivalued function which is single-valued in the plane with the corresponding cut [a,,
b,] and which becornes equal to z as z — . The constants B, , and functions p(t), () are found from
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formulae (1.7), (1.4) and (1.5), respectively, while the constants 4, n € I are found from the infinite
series of linear algebraic equations

ankAk = H”, nel (2.7)
kel
- X* (t) _Hp-%)y +
8, = ,{,t—-c di Hy=o o h l{’<aBl+R<t)>x (t)dt (2.8)

The solution of this system has to be found in the class of those complex sequences Ay, k € I such
that in any closed bounded domain not containing the pointsc,,n € I the senes (2.5) converges uniformly
and such that for small z & U,(L) its sum Q(z) does not exceed M | z [™ in modulus for some A < 1.
System (2.7) is a consequence of conditions (1.6). If this system is solvable in the given class of sequences,
its solution is unique and can be found by the reduction method or the method of successive approxi-
mations. Our later arguments assume that system (2.7) is solvable. Some cases when this system is
solvable will be considered in Sections 4 and 5.

In particular, if the boundary conditions of the problem are zero, and if in the second problem the
principal vectors P, are also zero, then

D, (2)=0B X - YA, /(z-¢,), ®,(2)=B, (2.9)

nel

The constants A, are found from system (2.7) where H, = [ X" (r)dt.
L,

3. THE BEHAVIOUR OF THE STRESSES AND STRESS ,
INTENSITY FACTORS IN THE NEIGHBOURHOOD OF A
MICROFLAW CLUSTER POINT

From the results of [1, 11] for the behaviour of the function ¥,({) for large { and Eq. (2.1), it follows
that for small z situated outside any fixed small t—:-nelghbourhood U(L) of the line L (as explained in
Section 1) the function ®,(z) does not exceed M | z|™ in modulus for any A € (A, 1) , where A, describes
the rate of growth of the original data of the problem near the MiF cluster point. The function R(z)
does not exceed M | z [* in modulus. Because the function X(z) is bounded outside the neighbourhood

U(L), the behaviour of the function ®,(z) for small z & U(L) also depends on the nature of the function
Q(2), which does not exceed M | z |™ in modulus, where A, is some non-negative number less than unity.
Consequently, if A; > A, then for small z & Ue(L) the function ®,(z) does not exceed M | z ™ in modulus,
and according to (1.8) the stresses, rotatlon and derivatives of the displacement components for small
z & U,(L) also do not exceed M |z| in modulus. If A; < A, they do not exceed M | z I in modulus
forany A e (Ag, 1)

When z — 0 along any fixed ray in the upper or lower half-plane, the functions X(z) and R(z) in formula
(2.2) tend to the limits 1 and 0, respectlvely, while the function ®,(z) does not exceed M |z | in modulus
when 0 < Ag < 1and M In |z | when A = 0. The behaviour of the stresses along these rays is therefore
governed by the behaviour of the function Q(z) as z — 0 along these rays, which in turn depends on
the behaviour of the solution of system (2.7) when 7 — .

We will find the stress intensity factors near the vertex g, = a, or g, = b, of the flaw L, [12, 13]

K (g,)-iKy(g,)= lim ;2%1/2n| X =8, 1(6,(x +i0) ~ it (x +i0))

x=>>g,,xel

where in the case of the first problem p = 1 and in the second p = —x. From formulae (1.8), (2.2)-(2.6)
we find that

K,(g,)-iK,(g,)= lim .l 2n|x—g, |P, (x+i0)=n(g, ) R(g,)+0O(g,)+0B] 3.1)
XL X

n(gn) gn(au + bn) - _I Vzn(bn —an) H (gn —C )/ \/(gn — 4 )(gn - bk) (3-2)

kel k#n

According to (1.1) the inequalities
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2 -
b,—a, < lab, < Mg,, 1g,1< M| n| !

are satisfied for large n, while the functions R(g,), Q(g,) can increase no faster thann — e as M |z ™
and so the stress intensity factors satisfy the inequality

|Kio(g) | < Mig,'"*<MinP!, 0<ic<l

for large n, i.e. they become as small as desired for flaw vertices situated sufficiently close to the cluster
point. Hence, in terms of the force fracture criteria [14] the system of MiFs L,,, n € I we are considering
is always stable with respect to fracture in some neighbourhood of the MiF cluster point. In the case
of global instability with respect to fracture, the fracture begins at the vertices of some finite set of flaws
that are “far” from the cluster point and depend on the external loads and distribution of the MiFs. In
this way the force criterion mechanism of the fracture of the MiF system under consideration differs
from the mechanism of the fracture of the system of microcracks that has been previously considered
[6]. The latter is unstable to fracture for arbitrarily small external loads, and its fracture occurs in a
neighbourhood of the MiF cluster point through the merging of all but a finite number of cracks. Specific
examples of fractures that occur through the mechanism we described above will be given in the following
section.

We also consider the stability of the MiF cluster point z = 0 to fracture using the energy criterion,
and to this end we study the invariant complex I'-integral of Rice—Cherepanov [15] along a circle of
small radius r centred at the point z = 0. If this circle intersects a sufficiently small neighbourhood of
some flaw L, in the sense of Section 1, then the part of the circle which lies within this neighbourhood
is replaced by the smaller part of the boundary of the neighbourhood.

Suppose that system (2.7) is solvable and that for large » its solution satisfies the inequality | 4, | <
Mila, M, 0<2; <1, Then Q(z) does not exceed z — 0 in modulus when 0 < A; < 1 and M, In |z !
when A, = 0 as M | z [ along any fixed ray in the upper or lower half-plane, but for small z ¢ U,(L)
one can only assert that | O(z) | < M3 |z |™for any A € (A4, 1). The function ®,(z) has the same properties
as z — 0 along the given rays, except that one must now.use Ag instead of A;.

We put A = max {Ag; A, }. Then according to (1.8) the I'-integral under consideration has the estimate
IT|= M2 from which it is clear that in the case A < Y this integral decreases without limit as r — 0.
Hence, in this case, in the energy criterion approach, the fracture of some small neighbourhood of the
MiF cluster point is again stable to fracture and the global fracture of the MiF system will again proceed
according to the mechanism described above. Examples where this situation occurs will be given in
Section 4.

If A = 1, the stability of a neighbourhood of the MiF cluster point to fracture in the energy
criterion approach depends on the value of the integral I', which as 7 — 0 can have a definite finite
limit or can increase without limit. In each such specific case it is necessary to carry out an additional
investigation.

Remark. Using a conformal mapping and the results of [16], one can similarly investigate the stressed state near
the finite cluster point of an infinite set of closed microcracks in a piecewise-homogeneous elastic plane which is
situated along the contact line of the media. A case was considered in [16] in which the cracks were clustered at
infinity.

4. A TWO-SIDED PERIODIC DISTRIBUTION OF MICROFLAWS
SEALED ACCORDING TO THE MAPPING { = 1/z

Suppose that the flaws are situated in the intervals L, = {ay, b,} where a,, l—(n+ )T +a,b' =
(n+ Y2)T-a,a <T/2,n =0, x1,...,ie. they cluster at the point z = 0 from both sides (Fig. 1a),
and that their images L, = [(n + ¥2)T —a, (n + 2)T + a] under the mapping { = 1/z form a periodic
set with period T lying along the entire real axis.

In this case, according to the results of [2] the function

cosm . ==, p=l 4.1)
\/ cos(n+h)cos(n—b) Tz T

X(2)=

while system (2.7) has the form
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z an—kAk_au+y2k2 Ak =lHII’ Il=0, il’

k=—oo (= —o0

2x sin x dx
T 2.3 . ) T
X" =01 (gin? b —sin? )c)/2

]
o, =]
0

From this, adding all the equations, and summing the resulting series and computing the integrals,
we find the sum 24, = C; cos b where C, is found from formula (1.7). Hence system (2.7) has the form

ian—kAk =G,p n=0,%l,...
k=—oco
K—P (4.2)

w =5 (nF +a
2n(x+1)

n+

y, Peos b)—i [(R(t)+ B, cos h)X " (t)dt

g

For large n the numbers G, satisfy the inequalities
IG, 1< Mgla*72, A, <1

and so [17, 18] system (4.2) is solvable in the class of sequences described in Section 2 and has the unique
solution

—_._1_ _Gﬁzi_ 5 = . n = < n
©2mi o) ! L &G CO= T Gf" al= T (43)

n
k=—oo0 H=—oo n=—oo

where &, are coefficients of the complex Fourier series of the function 1/a(t) in the interval [0, 2r). For
large n the numbers A,, satisfy the inequality | 4, | < M; | n 2 for any A € (Ag, 1). The solution of
system (4.2) can also be found by the reduction method.

According to (3.1), (2.2) and (4.1) the stress intensity factors near the vertexg, = a, or g, = b, obey
the formula

K\ (g,)-iK,(g,) =18, INTtgb[R(g,)+0O(g,)+ B cosh], b=mnal/T

The functions R, Q and the constant B; are found from formulae (2.4), (2.5) and (1.7), (1.4),
respectively.

In this case the functions R(z), Q(z), which also means the functions ®,(z), together with the function
®@,(z) as z — 0 outside any fixed small neighbourhood U,(L) can increase no faster than M | z [* for
any A € (Ag, 1), where A describes the rate of growth of the original data of the problem in the
neighbourhood of the point z = 0. This follows from the results of [2, 11] and the property of 4,, given
above. Consequently, the stresses, rotation and the derivatives of the displacement components can
increase without limit as z — 0 outside U,(L), but no faster than M | z l_)‘ for any A € (Ag, 1), while the
stress intensity factors K| 5(g,) decrease no slower than M | z I outside n — oo. In the case Ao < Y2 the
invariant I'-integral along a circle of radius r with centre at z = 0 always tends to zero as r — 0, while
in the A9 = Y2 case it can have a finite or infinite limit. In particular, if all the initial data of the problem,
apart from the loads at infinity, are zero, the solution of the problem is given by functions (2.9), and A
can be taken to be as small as desired.

Example 1. Suppose that the plane is weakened by cracks L,,n = 0, =1, ..., acted upon at their edges by constant
stresses o; = -0, =0, 1:’;}, = 1, while a specified stress and rotation act at infinity. Then the function R(@) =0,
while the principal vector of the external forces applied to the edges of the crack L, is equal to P, = 2(o, —it,)(a,
- b,). We take stresses G, T, such that

K- i
e +p|) P, = iB, cosb 1{,X+(t)m (4.4)

ie.

o, ~it, =ia” (x-1)7'(2n+D’T* -4a*)BB,, B =o7 -it], 4.5)
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B, = 4(2n+ 1)K + 2T cosb] ¥ sin xdx

0(4x? =(2n+1)’ 1) (sin? b-sin? x)%

Hence, in particular, it is clear that for large n the stresses 6, 1, decrease as 1/n, while the numbers P, decrease
as 1/n. Then the principal vector P = £P, = 0 and in system (4.2) all the G, = 0. Hence the solution of the system
is trivial and Q(z) = 0. The solution of the elasticity theory problem is thcreforc given by the functions

®,(2) = B, (cosb)X(2), By(e)=By+ 3 Sn=fwppbu=2
e

and the stress intensity factors are found from the equation
K\ (g,)~iK2(g,) =18, 1y 4 Tsin2bB; (4.6)

where g, = a, or g, = b, . From this it is clear that the largest value of | K; — iK, | is reached when g, = a_; and g,
= by, while when n - oo the stress intensity factors decrease as 1/n.

Consequently, in the force criterion approach to fracture, when | X; — iK; | reaches a critical value, the fracture
of the crack system starts at the left tip a_; of crack L_; and the right tip b, of crack Lo, simultaneously and to the
same degree. Because the functions @, ,(z) are bounded outside any field small neighbourhood of the line L, the
same situation applies in the energy approach to fracture.

Example 2. Suppose that the plane is weakened by thin rigid, rectilinear sharply-angled inclusions L,, n = 0,
+1,..., and that sp@cnﬁed strcsses and rotation are applied at infinity. We apply loads to the inclusions L, so that
Egs (4 4) are satisfied, i.e. P, = 8x~ BIB,, where B; and i, are found from formulae (1.7), (1.4) and (4.5), rcspccnvely
Then the stress intensity factors again satisfy Eq. (4.6) and the situation described in Example 1 applies to the
stability of this system to fracture.

5. A ONE-SIDED PERIODIC DISTRIBUTION OF MICROFLAWS
SCALED ACCORDING TO THE MAPPING { = 1/z

Suppose that the flaws are distributed along the sections L, = [a,, b,] where ;" = (n+ )T + a,
=(n+Y%)T-a,a<T/2,n=0,1,...,ie.theyare always to the right of the cluster pointz =0
(Flg 1b) and their images under the mappmg { = 1/z form a periodic set with period T located only
on the positive real semi-axis.
In this case we have [3]

X(z) =T+ BTM=b) /T(M), n=Y-1/(T2), b=a/T

where I'(z) is the Euler gamma-function, and system (2.7), after transformations similar to those applied
to this system in Section 5, takes the form

kE.OY.,kAk =iH, +o(C +BB)Y, . n=0,1,... 6

J. |1"(,x—n+b)F(x—n—b)|/ dx
b '(x-n) n-k-x'

a
T
B_HEO T(2n+1)(4a8a—(211+1) T2) [ ( ) ( ) 2“’(%)}

Y(2)=(nT(z2)), a=+cosmh

Ynk b=

The constants C,, By, H, are found from formulae (1.7), (1.4) and (2.8), and the stress intensity factors
obey the formula

. _ Ttgnb Y
Kl(gu)_’KZ(gn)_|gnIr("+1ib) mmb—)) (R(gll)+Q(gll)+Bl dCOSTtb)
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where the upper plus sign refers to the vertex g, = a,, and the lower minus sign to g, = b,,. The unique
solvability of system (5.1) was proved in {3], but the solution was not found in explicit form. The solution
can be obtained by the reduction method.

All the results and derivations of Section 4 apply to the behaviour of the stresses and stress intensity
factors in the neighbourhood of this MiF cluster point.

6. THE INTERACTION OF A MACROFLAW WITH AN INFINITE
SERIES OF MICROFLAWS

Suppose that the plane is weakened by a macroflaw (MaF) Ly = [-2/, 0],/ > 0 and MiFs L, = {a,,
b,,a,>0,b,>0,n=1,2,...which cluster at the tip z = 0 of the MaF (Fig. 2a).

In this case all the results of Section 2 remain true if one puts I = {0; 1; ...}, a9 = -2, ¢o = -
in all the formulae, and also puts V(agho)/co = 1 in formulae (2.2) and (2.3). Here the solution of
system (2.7) has to be found in the class of sequences Ay, k, € I such that the sum Q(z) of series
(2.5) for small z & U,(L) does not exceed in modulus the expression M | z |™ for some A < Ya. For
the stress intensity factors at the tips of the MiFs L,,n = 1, 2, ..., formulae (3.1) and (3.2) hold with
the above stipulations, and the stress intensity factors at the left tip ag = —2/ of the MaF are found from
formula (3.1) where

T‘(a()) = a_l \/ﬂ—lﬁ(ao =< )/ \/(aO -4, )(”o - bn)

n=|

For the right tip z = 0 of the MaF, the neighbourhood of which contains an infinite set of MiFs, it is
in general impossible to define a stress intensity factor, because in the general case for small z & Uy(L)
only an upper estimate is known for the functions ®; 5(z), and the precise asymptotic forms are unknown.
Nevertheless, there are cases when these functions have definite asymptotic forms as z — 0 along certain
rays. Then according to (1.8), (2.2)+2.6), asz — 0 the stresses will also have a definite asymptotic form
containing parameters which can be taken to be the stress intensity factors.

For example, suppose that when z — 0 along the imaginary axis the function Q(z) ~ A(2rz)™, 0 <
A < Y2. Then the same asymptotic form occurs z — 0 along any fixed ray lying in the upper or lower
half-plane. Here the function z — 0 defined by formula (2.4) has the limit B = R(0) and

®,(2) ~ (K, —iK,)2n2) ™2, K, —iK, = ANTl, 0<A<} (6.1)
®,(2) ~ (K, - iK,)2nz) "%, K, -iK, =(A+B+0B)Ynl, A=0 (6.2)

Branches of multivalued functions in the plane with a cut along the negative real semi-axis are taken
so that on the positive real semi-axis they take real positive values For the function ®,(z) given by formula
(2.6), when z — 0 along a given ray we have the estimate | ®,(z) | <M |z [ when0 <A < 1and| D,(2) |
< M In|z[! when Ay = 0, where Aq describes the growth rate of the original data of the problem near
the point z = 0. .

Suppose Ay < A + Y2. Then according to (1.8) the asymptotic form of the stresses as z — 0 is completely
determined by the representations (6.1) and (6.2), and the constants K; and K, in these
representations are naturally taken to be the stress intensity factors at the tip z = 0 of the MaFE. When
A = 0 the stress intensity factor in this sense and the stress intensity factor in the classical sense [12,
13] are identical. In the case Ag = \ + Y2 the asymptotic form of the stresses as z — 0 also depends on
the behaviour of the function ®,(z) asz — 0. In each case one has to perform additional investigations,
which we shall not dwell on.

If the MaF has the asymptotic form (6.1) near to the tip z = 0, the invariant Rice—~Cherepanov I'-
integral computed along a circle of small radius r and centre at z = 0 increases as r — 0 as 7 2. This
indicates the instability of the MaF to fracture in terms of the energy criterion.

If the MaF has the asymptotic form (6.2) near to z = 0, then in the case when A < V2 the given I'-
integral will have a finite limit as Ly = (—eo, 0] whose value determines the stability of the tip of the
MaF to fracture. In the case when Ay > Y2 the I'-integral as r — 0 can have both finite and infinite limits.
In each such case an additional investigation is required.

Suppose that the MaF lies along the ray Ly = (-, 0] (Fig. 2b) and the boundary conditions
specified along its sides decrease no slower than M | £ [™, &g > Y2 as f — e. In this case all the results
of Section 2 still remain true if the functions X(z) and R(z) are replaced by the functions
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19 p@r) dt

Xi(2)=X@)/ V2. R(@)=R@+— L T2

andI ={1;2;...},L =LyUL{U...are taken in all formulae, while the solution of system (2.7) is
sought in the class of sequences 4, k € I such that the sum Q(z) of series (2.5) for small z € U(L)
does not exceed M | z [* in modulus for some A < V2. Here, according to (1.8), in order to find the
constant B, in formulae (2.6) in the case of the first problem (i.e. when p = 1) it is necessary to specify
the value of the hydrostatic stress (6% + ©3)/2 at infinity and the rotation @™, while in the case of the
second problem p = —x we need the value (6% + 67)/2 or only 67 and @™ or 1%,. Because the function
®,(z) ~ Byz 2 for large z outside some fixed neighbourhood of the ray Ly, in order to find the constant
B, in formula (2.2) it is necessary to specify not just the values of these parameters as z — o, but also
their asymptotic form with accuracy to | z [ inclusive.

In this case formulae (3.1) and (3.2) also hold for the stress intensity factors at the tips of the MiFs
if one takes I = {1; 2; . . .} and the number n(g,) is divided by V(g,), while the situation previously
described again applies to the problem of the stress intensity factor at the tip z = 0 of the MaF.

The model considered above of an elastic plane with an infinite set of MiFs in the form of cracks or
thin rigid linear inclusions which cluster at a finite point can be used to study the stressed state near a
point with a small neighbourhood containing a large number of MiFs of the given type, situated in a
given way and strongly concentrated near that point. In this case a set of MiFs, which must in reality
be finite, can be replaced by an infinite set of MiFs containing new flaws such that to a given accuracy
they reflect the order and nature of the positioning of the original flaws. One can also use other models
to describe the actual object. For example, the neighbourhood with flaws can be replaced by a material
without flaws and described by different elasticity constants. To determine the effective elasticity constants
of the new material one can use the model described above.

This research was performed with financial support from the Russian Foundation for Basic Research
(94-01-00207).
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